Experimental study on effect of second-harmonic injection at input of classes F and F–1 GaN power amplifiers

Published in

doi:10.1049/el.2010.0392

This paper is a postprint of a paper submitted to and accepted for publication in Electronics Letters and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library.
http://www.ietdl.org/journals/doc/IEEDRL-home/info/support/copyinf.jsp
Experimental study on effect of second-harmonic injection at input of classes F and F⁻¹ GaN power amplifiers

This presented study focuses on the impact of gate-source voltage waveforms on power added efficiency performances of GaN HEMTs for the design of class F and class F⁻¹ amplifiers. It is shown that second-harmonic signal injection at the gate port of transistors can lead to efficiency improvements in the case of class F operation and efficiency deteriorations in the case of class F⁻¹ operation. This work is applied to a 15 W GaN HEMT die from Cree at a fundamental frequency Fo equal to 2 GHz. Calibrated on-wafer time domain measurements are reported.

Introduction: AlGaN/GaN HEMT technology offers good potentialities for high-efficiency high power microwave amplification because of high current densities and high breakdown voltage. High efficiency performances of microwave power amplifiers are reached when fundamental and harmonic frequency components (Fo, 2Fo, 3Fo) are terminated into appropriate impedances. High efficiency harmonic tuned microwave power amplifiers have been widely reported during the past few years [1–6].

In this Letter, we focus on class F and class F⁻¹ operation modes and examine a possible way to increase efficiency performances using active second-harmonic signal injection at the gate port of GaN HEMTs. An appropriate control of both first and second harmonics of the gate-source voltage results in a quasi-half sine wave shape having a DC level close to or a little above the pinch off voltage of the transistor. Such a gate-source voltage shape results in an aperture time reduction of the drain-source current. Consequently a decrease of the DC drain current and an improvement of efficiency can be obtained. In the following, we demonstrate by experimentation that this technique can be successfully applied to class F amplifiers but is not compliant with class F⁻¹ amplifiers.

Second-harmonic injection at input of class F and class F⁻¹ GaN amplifiers: On-wafer calibrated time domain waveform measurements of a 15 W GaN HEMT die from Cree have been performed using a test bench shown in Fig. 1. Two synchronised generators (respectively at frequencies Fo = 2 GHz and 2Fo = 4 GHz) are used to drive the transistor input. A large signal network analyser (LSNA) based on the harmonic sub-sampling technique enables simultaneous measurements of voltage and current waveforms at the gate and the drain ports [7]. Calibrated measurements at the probe tips are then de-embedded to obtain voltage and current waveforms as close as possible to the intrinsic ports of the transistor (see Fig. 1).

Measurement result analysis: For class F operation, appropriate second-harmonic input injection enables obtaining the best performances. 76% PAE and 40.5 dBm output power are reached when the gate-source...
voltage waveform has a quasi-half sine shape. When the source impedance at second-harmonic \(Z_{2a} \) is a short or a 50 \(\Omega \) it can be observed in Fig. 2a that PAE decreases respectively down to 71 and 60\%. The examination of time domain waveforms plotted in Fig. 3a clearly demonstrates the benefit of second-harmonic input injection on PAE performances. It can be observed that the aperture time of the drain current is reduced when gate-source voltage shape becomes a quasi-half sine (Fig. 3c). Consequently, the DC drain current decreases as indicated by curves plotted in Fig. 4a. Another key point is that for class F operation load impedance at 2Fo is a short circuit. In the presence of a significant gate-source voltage component at 2Fo, the voltage controlled drain-current source of the transistor generates an additional quantity of drain current at 2Fo which is terminated into a short. Therefore, drain-source voltage conditions of the transistor are not significantly modified, and the resulting drain voltage component at the fundamental frequency do not vary, as can be observed in Fig. 5a. For all the reasons mentioned above, PAE performances are improved in the case of second-harmonic injection at the gate port with a level 10 dB lower compared to the fundamental component level. Furthermore, in that particular case, the negative peak of the gate-source voltage is reduced (see Fig. 3c). This can be favourable considering reliability aspects of the device.

Class F\(^{-1}\) operation: For class F\(^{-1}\) operation, second-harmonic injection deteriorates PAE performances, as can be seen in Fig. 2b, despite the fact that \(I_{ds1} \) decreases (Fig. 4b) for the reasons previously explained. The main reason is because for class F\(^{-1}\) operation \(Z_{L2} \) is a high impedance (close to an open).

In the presence of a significant gate-source voltage component at 2Fo, the voltage controlled drain-current source of the transistor generates an additional quantity of drain current at 2Fo which is antagonist with high impedance load conditions at 2Fo. Therefore, drain-source voltage conditions of the transistor are significantly modified, as can be observed in Fig. 3b, and the resulting \(V_{ds1} \) decreases (see Fig. 5b). As a consequence, the saturated output power decreases and is reached at a lower input power, as it can be observed in Fig. 2b. Both output power and PAE performances are deteriorated.

Conclusion: Calibrated on-wafer time domain measurements have demonstrated PAE improvement or degradation owing to second-harmonic manipulation at the gate port of GaN HEMTs. The analysis of voltage and current waveforms have demonstrated that second-harmonic injection at the gate port of the transistor can lead to PAE improvement provided that load impedance at the second harmonic is a low impedance. This work provides useful information to aid in designing high efficiency multi-stage harmonic tuned power amplifiers. For example, study of cascaded class F\(^{-1}\) and class F circuit topologies can be investigated.

© The Institution of Engineering and Technology 2010
8 February 2010
doi: 10.1049/el.2010.0392
One or more of the Figures in this Letter are available in colour online.
A. Ramadän, T. Reyevrand, A. Martin, J.M. Nebus and P. Bouyssè (C2S2 Department, XLIM UMR 6172, 123 Avenue Albert Thomas, Limoges Cedex 87060, France)
E-mail: alaaeddine.ramadan@xlim.fr
L. Lapière (CNES Toulouse, 18 Av. Edouard Belin, Toulouse 31055, France)
J.F. Villenaze and S. Forestier (Thales Alenia Space, 26 Av. Jean François Champollion, Toulouse 31100, France)

References